Adding Algorithms
New algorithms can either be added by extending one of the current solver (or add-on packages), or by contributing a new package to the organization. If it's a new problem (a new PDE, a new type of differential equation, a new subclass of problems for which special methods exist, etc.) then the problem and solution types should be added to DiffEqBase
first.
After the problem and solutions are defined, the solve
method should be implemented. It should take in keyword arguments which match the common interface (implement "as many as possible"). One should note and document the amount of compatibility with the common interface and Julia-defined types. After that, testing should be done using DiffEqDevTools
. Convergence tests and benchmarks should be included to show the effectiveness of the algorithm and the correctness. Do not worry if the algorithm is not "effective": the implementation can improve over time and some algorithms useful just for the comparison they give!
After some development, one may want to document the algorithm in DiffEqBenchmarks and DiffEqTutorials.
Adding new algorithms to OrdinaryDiffEq
This recipe has been used to add the strong stability preserving Runge-Kutta methods SSPRK22
, SSPRK33
, and SSPRK104
to OrdinaryDiffEq
. SSPRK22
will be used as an example.
- To create a new solver, two (three) types have to be created. The first is the algorithm
SSPRK22
used for dispatch, the other ones are the corresponding cachesSSPRK22Cache
(for inplace updates) andSSPRK22ConstantCache
. - The algorithm is defined in
algorithms.jl
asstruct SSPRK22 <: OrdinaryDiffEqAlgorithm end
. Although it does not have the FSAL property, this is set to true since the derivative at the start and the end of the interval are used for the Hermite interpolation, and so this is FSAL'd so that way only a single extra function evaluation occurs over the whole integration. This is done inalg_utils.jl
viaisfsal(alg::SSPRK22) = true
. Additionally, the order is set in the same file viaalg_order(alg::SSPRK22) = 2
. - The algorithm
SSPRK22
is exported inOrdinaryDiffEq.jl
. - In
caches.jl
, the two cache typesSSPRK22Cache
(for inplace updates) andSSPRK22ConstantCache
are defined, similarly to the other ones. Note:u_cache(c::SSPRK22Cache) = ()
anddu_cache(c::SSPRK22Cache) = (c.k,c.du,c.fsalfirst)
return the parts of the modifiable cache that are changed if the size of the ODE changes. - A new file
perform_step/ssprk_perform_step.jl
has been used for the new implementations. For both types of caches, the functionsinitialize!
andperform_step!
are defined there. - Finally, tests are added. A new file
test/ode/ode_ssprk_tests.jl
is created and included intests/runtests.jl
via@time @testset "SSPRK Tests" begin include("ode/ode_ssprk_tests.jl") end
. - Additionally, regression tests for the dense output are added in
test/ode/ode_dense_tests.jl
.
For more details, refer to https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl/pull/40
Self-Contained Example
using OrdinaryDiffEq
import OrdinaryDiffEq: OrdinaryDiffEqAlgorithm,OrdinaryDiffEqConstantCache,
alg_order, alg_cache, initialize!, perform_step!, @muladd, @unpack,
constvalue
struct Mead <: OrdinaryDiffEq.OrdinaryDiffEqAlgorithm end
export Mead
alg_order(alg::Mead) = 4
struct MeadConstantCache <: OrdinaryDiffEqConstantCache
b1
b2
b3
b4
b5
b6
c2
c3
c4
c5
c6
end
function MeadConstantCache(T1,T2)
b1 = T1(-0.15108370762927)
b2 = T1(0.75384683913851)
b3 = T1(-0.36016595357907)
b4 = T1(0.52696773139913)
b5 = T1(0)
b6 = T1(0.23043509067071)
c2 = T2(0.16791846623918)
c3 = T2(0.48298439719700)
c4 = T2(0.70546072965982)
c5 = T2(0.09295870406537)
c6 = T2(0.76210081248836)
MeadConstantCache(b1,b2,b3,b4,b5,b6,c2,c3,c4,c5,c6)
end
alg_cache(alg::Mead,u,rate_prototype,uEltypeNoUnits,uBottomEltypeNoUnits,tTypeNoUnits,uprev,uprev2,f,t,dt,reltol,p,calck,::Val{false}) = MeadConstantCache(constvalue(uBottomEltypeNoUnits),constvalue(tTypeNoUnits))
function initialize!(integrator, cache::MeadConstantCache)
integrator.kshortsize = 2
integrator.k = typeof(integrator.k)(undef, integrator.kshortsize)
integrator.fsalfirst = integrator.f(integrator.uprev, integrator.p, integrator.t) # Pre-start fsal
integrator.destats.nf += 1
# Avoid undefined entries if k is an array of arrays
integrator.fsallast = zero(integrator.fsalfirst)
integrator.k[1] = integrator.fsalfirst
integrator.k[2] = integrator.fsallast
end
@muladd function perform_step!(integrator, cache::MeadConstantCache, repeat_step=false)
@unpack t,dt,uprev,u,f,p = integrator
@unpack b1,b2,b3,b4,b5,b6,c2,c3,c4,c5,c6 = cache
k1=integrator.fsalfirst #f(uprev,p,t)
k2=f(uprev+c2*dt*k1,p,t+c2*dt)
k3=f(uprev+c3*dt*k2,p,t+c3*dt)
k4=f(uprev+c4*dt*k3,p,t+c4*dt)
k5=f(uprev+c5*dt*k4,p,t+c5*dt)
k6=f(uprev+c6*dt*k5,p,t+c6*dt)
u=uprev+dt*(b1*k1+b2*k2+b3*k3+b4*k4+b6*k6)
integrator.fsallast = f(u,p,t+dt)
integrator.k[1] = integrator.fsalfirst
integrator.k[2] = integrator.fsallast
integrator.u = u
end
f = ODEFunction((u,p,t)->1.01u,
analytic = (u0,p,t) -> u0*exp(1.01t))
prob = ODEProblem(f,1.01,(0.0,1.0))
sol = solve(prob,Mead(),dt=0.1)
using Plots
plot(sol)
plot(sol,denseplot=false,plot_analytic=true)
using DiffEqDevTools
dts = (1/2) .^ (8:-1:1)
sim = test_convergence(dts,prob,Mead())
sim.𝒪est[:final]
plot(sim)
# Exanple of a good one!
sim = test_convergence(dts,prob,BS3())
sim.𝒪est[:final]
plot(sim)
Adding new exponential algorithms
The exponential algorithms follow the same recipe as the general algorithms, but there are automation utilities that make this easier. It is recommended that you refer to one of the model algorithms for reference:
- For traditional exponential Runge-Kutta type methods (that come with a corresponding Butcher table), refer to
ETDRK2
. - For adaptive exponential Rosenbrock type methods, refer to
Exprb32
. - For exponential propagation iterative Runge-Kutta methods (EPIRK), refer to
EPIRK5P1
.
The first two classes support two modes of operation: operator caching and Krylov approximation. The perform_step!
method in perform_step/exponential_rk_perform_step.jl
, as a result, is split into two branches depending on whether alg.krylov
is true. The caching branch utilizes precomputed operators, which are calculated by the expRK_operators
method in caches/linear_nonlinear_caches.jl
. Both expRK_operators
and the arnoldi
/phiv
methods in perform_step!
comes from the ExponentialUtilities package.
The EPIRK methods can only use Krylov approximation, and unlike the previous two they use the timestepping variant phiv_timestep
. The timestepping method follows the convention of Neisen & Wright, and can be toggled to use adaptation by alg.adaptive_krylov
.
Although the exponential integrators (especially the in-place version) can seem complex, they share similar structures. The infrastructure for the exisitng exponential methods utilize the fact to reduce boilerplate code. In particular, the cache construction code in caches/linear_nonlinear_caches.jl
and the initialize!
method in perform_step/exponential_rk_perform_step.jl
can be mostly automated and only perform_step!
needs implementing.
Finally, to construct tests for the new exponential algorithm, append the new algorithm to the corresponding algorithm class in test/linear_nonlinear_convergence_tests.jl
and test/linear_nonlinear_krylov_tests.jl
.